If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2=1
We move all terms to the left:
17x^2-(1)=0
a = 17; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·17·(-1)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*17}=\frac{0-2\sqrt{17}}{34} =-\frac{2\sqrt{17}}{34} =-\frac{\sqrt{17}}{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*17}=\frac{0+2\sqrt{17}}{34} =\frac{2\sqrt{17}}{34} =\frac{\sqrt{17}}{17} $
| 3+1x=4+1x | | 2t=t-15 | | 0.33x-5=0 | | 23-x=0 | | -0.48-15.3f=-15.5f-4.04 | | 3.3^(2x-1)-7=2 | | m=690(1+.08)^7 | | 2x-4=2+8 | | 8g+10=36 | | 4p+12=7p | | (S^2)-4s-6=6 | | -15-12n=5+4n-15n | | (12x-15)x=(7x)3 | | (1/4-9/2)+(-5x+1/2)=x-2.5 | | 3(4x=+8)=-43+31 | | 8-3(5-2y)=0 | | 3d+16=9d-20 | | 45x+77=45x-77 | | 10+2p=-10+9p-8 | | 4m(5m+6)=0 | | 3.5(2n+10)+7=3.8n+10n+61.2 | | 9+3x=3(2+x)+3 | | -9+2v-5=4+4v | | –9+2v−5=4+4v-9+2v-5=4+4v | | 3x-2+2x+5=38 | | 8(2x+3x+2)=–4x+138 | | 2.50+5.00=5.00+0x | | 8(2x+3x+2)=–4x | | 5y-10=7y+8 | | –9+2v−5=4+4v | | -f=-3f-10 | | 9x+1=134 |